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On solutions relating to conical vortices over a 
plane wall? 

By C.  SOZOU 
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(Received 8 July 1991 and in revised form 7 May 1992) 

It is shown that certain similarity solutions relating to axisymmetric vortices in a 
viscous fluid over a plane wall can be associated with a point source or sink of 
vorticity at the origin and a line vortex along the symmetry axis of the system. The 
rotationality of the nonlinear terms in the momentum equation, due to the radial 
vorticity and the azimuthal flow field, induces a poloidal flow which relates to one- 
cell or two-cell configurations. It is shown that a small imput of radial vorticity into 
a strong line vortex can induce an intense up-draught. There are ranges of values of 
the parameters yielding two solutions. The extremeties of these ranges are associated 
with values that yield velocity breakdown. 

1. Introduction 
Similarity solutions relating to steady axisymmetric vortices in a viscous semi- 

infinite fluid bounded by a plane wall have been considered by several authors 
including Goldshtik (1960) and Serrin (1972). Goldshtik's solution has a singularity 
in the azimuthal component of the velocity field u along the symmetry axis which is 
caused by a line vortex. That solution relates to an inflow near the wall and an up- 
draught along the symmetry axis and breaks down when the parameter k = r/2v 
exceeds a critical value with is about 2.765. Here 27cr is the circulation associated 
with the line vortex along the symmetry axis and v the coefficient of kinematic 
viscosity of the fluid. The Goldshtik solution exhibits features associated with 
atmospheric vortices, such as tornadoes and waterspouts, but the value of k at 
breakdown is too small for such vortices. The solutions constructed by Serrin relate 
to one-cell or two-cell flows and do not have such a severe limitation on the value of 
k but they have a singularity along the axis of the system in both the azimuthal and 
axial component of u. Since there is a line vortex along the axis of the system the 
presence there of a singularity in u may not appear a severe difficulty but the 
singularity in the axial component of u is not caused by the vortex. It is inherent in 
the structure of the poloidal flow considered by Serrin and persists when the rotation 
is switched off. The singularity is compatible with a force along the axis of symmetry 
with density inversely proportional to the distance from the origin (Paul1 & Pillow 
1985~; Goldshtik & Shtern 1990). Obviously there are problems with the setting up, 
let alone maintaining such a configuration. 

Yih et al. (1982) relaxed the no-slip condition on the wall and constructed one-cell 
and two-cell vortex solutions such that u is finite on the axis of the system. On the 
wall the tangential component of u is not zero. These authors claimed that their 
solutions are distinct from those previously found. However, they did not put 

t With an Appendix by M. A. Goldshtik and V. N. Shtern. 
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forward any suggestions concerning the origin of the azimuthal flow associated with 
the solutions they constructed. 

Paul1 &, Pillow (1985b) showed that in a unbounded fluid the rotation associated 
with the similarity solutions described here and known as conical vortices can be 
induced by two independent semi-infinite lines of torque producing singularities 
along the axis of the system. 

Goldshtik suggested that the configuration he studied can be generated by the 
constant rotation of a thin long cylindrical rod along the symmetry axis of the 
system. For such an arrangement the radial velocity along the axis would be zero but 
this is not the case for the solution constructed. Indeed when k is close to its critical 
value the flow associated with his solution has a jet-like structure in the axial region. 

The electrical analogy 
We note that in all the above-mentioned studies the vorticity, in a spherical polar 
coordinate system ( r ,  8, $), is of the formf(8)/r2 and its radial component is not zero, 
that is the origin acts like a vorticity source or sink. The radial vorticity and the 
azimuthal velocity correspond, respectively, to the current density j and the 
magnetic induction B associated with some magnetohydrodynamic (MHD) problems 
that were considered some twenty years ago by several authors including Lundquist 
(1969), Sozou (1971) and Shivola & Shcherbinin (1971). In  appropriate units j and B 
are connected by the relationship V x B = j and in those problems the electric current 
is brought by a thin wire along the line 0 = 7c to the origin and is discharged radially 
into a conducting fluid occupying the region B < in. The j x B or Lorentz force due to 
j and the associated B is rotational and, since it cannot be balanced by a pressure 
gradient, generates a poloidal flow field. By analogy, in conical vortices the 
azimuthal velocity can be thought of as generated by the vortex lines and, in the 
absence of other causes, the poloidal flow field by the rotationality of the vector 
product of the radial vorticity and the associated azimuthal velocity. For the MHD 
problem, in the case of small magnetic Reynolds numbers R,, j is independent of 8 
and the Lorentz force is independent of the poloidal flow it drives. In the case of small 
Reynolds numbers R the parameters associated with the conical vortices bounded by 
a plane wall have the same structure as the corresponding parameters for the MHD 
problem. In particular the study of Yih et al., relating to the case R 4 1 and (in their 
notation) T = 0 ,  yields a radial vorticity and an azimuthal velocity field which, apart 
from proportionality constants, are equal to the expressions for j and B associated 
with Lundquist’s study. Also for this case the poloidal flow field, apart from a 
negative constant factor, is the same as that found by Lundquist. When R is not 
small the radial vorticity is convected by the poloidal flow and its distribution is 
dependent on 8. The current density in the corresponding MHD problem when R, 
is not small is also convected by the poloidal flow (Sozou & English 1972). 

The solution constructed by Goldshtik relates to the case where the origin acts like 
a sink of vorticity and all the vorticity accumulated there is discharged in the axial 
direction in the form of a line vortex along the axis 8 = 0 so that the vorticity flux 
out of the surface B < @  is zero. The vorticity configuration of this solution is 
compatible with suggestions, for example by Lighthill (1963), associating atmo- 
spheric vortices, such as whirlwinds, with the upward tilting of horizontal vortex 
tubes in the boundary layer on the ground. Figure 1 is a reproduction of Lighthill’s 
figure 11.3, p. 50 and illustrates schematically the proposed configuration. According 
to our ideas there is a secondary poloidal flow associated with the configuration of 
figure 1 .  A suggestion similar to that of Lighthill was put forward by Maxworthy 
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FIGURE 1. Lighthill's model for a whirlwind. 
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FIGURE 2. Upward tilting of vortex tubes in lowest boundary layer by gust fronts for a waterspout 

configuration, according to Simpson (1982, figure 5.2). The resulting whirling is postulated. 

(1973), concerning the formation of dust devils. Maxworthy says also that the tilted 
vortex lines pass over the column of the dust devil and descend to the ground at a 
distant location and do not interact with the basic vortex. 

A similar mechanism was invoked by Simpson (1982) concerning the generation of 
waterspouts, that is intense columnar vortices over water. Figure 2 is a reproduction 
of Simpson's figure 5.2 and illustrates schematically the proposed configuration. She 
points out (p. 170) that a gust front is a wedge of cold dense air which is assumed to 
tip bundles of horizontal vortex tubes vertically upwards and thus induces circulation 
around the tilted bundle. It is generally believed that in such configurations there 
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occurs intensification of the axial vorticity by the stretching over a relatively short 
time of the vertical part of the vortex tubes. For example, Simpson et al. (1986) 
estimated (p. 773) that  in waterspouts the vertical vorticity, due to stretching, can 
increase by a factor of 20 in five minutes. 

Also, according to Snow (1984), convergence of background vorticity, tilting and 
vertical stretching are the processes that lead to the formation of tornado vortices. 

The stretching of the axial vorticity, for the simplified idealized configuration 
considered here, is represented by an intensified line vortex along the axis of the 
system, so that there is a net vorticity flux out of the surface 8 < in, which means 
that the condition of zero azimuthal velocity on the wall 8 = 4. is not satisfied. Here 
we investigate mainly such configurations assuming the flow is driven by radial 
vorticity. When the vorticity imput is stopped the vortex, due to  diffusion, 
dissipates. The atmospheric vortices are complex phenomena and the simple 
similarity solutions presented below cannot provide quantitative information 
concerning the processes associated with these vortices. However, they support the 
view that the stretching of the axial vorticity results in the intensification of the flow 
that is induced by converging vorticity and are compatible with values of k % 2.7 at  
the breakdown stage. 

2. General equations 
The general equations of the problem have been derived by several authors, 

including Serrin and Goldshtik & Shtern, and their details will not be repeated here. 
Below we briefly summarize the main features of the equations. 

Let p ,  p,  v and v denote the pressure, density, coefficient of kinematic viscosity and 
velocity of an incompressible viscous fluid which is bounded by the plane 8 = in of 
a spherical polar coordinate system ( r ,  8, $). The line 0 = 0 is along the axis of 
symmetry of the system and is directed into the fluid. The velocity is assumed to  be 
steady axisymmetric and to be given by 

( 1 )  
where p = cos 8 ,  r is a constant that, has the dimensions of circulation, g and f2 are 
functions of p and a prime denotes differentiation with respect to  p. The wall 8 = in 
bounding the system corresponds to  p = 0 and the axis of the system to p = 1.  The 
function g(p)  can be related to a stream function + such that 

u = ( l / r )  [ - vg', - vg/( 1 -p2)1, rQ/( 1 -pu")i], 

+ = V~S(P). (2) 

(3) 

The fluid vorticity = W x u turns out to be 

5 = - ( i p )  [rw, 0, ~ ( i  - p 2 ) $ " ] .  

The $-component and the curl of the momentum equation yield, respectively, 

where G"' = - 4QQ'/ ( 1 - p2) (6) 

g2-2(1 -,~~)g'-4pg = 4k2G(p) ,  (7) 

and k = r/2v. Integrating ( 5 )  three times and adjusting the constants of integration 
we obtain 

tQ2((t) dt + 2p J: Q 2 ( t )  dt 
where G ( p )  = 2( 1 -p)' ~ + Pp2 + Qp + S ,  

( 1  - t2)2 (1  + t y  
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and P ,  Q are S and constants. 
If we set 

g = -2( l -pZ)u’/u,  

u0”+2u‘Q‘ = 0, 
(4) and (7)  become 

Integrating (10) twice we obtain 

Q = a+b-b u-’(t)dt u P ( t ) d t ,  s: I1 
where a = Q( 1) and b = Q(0) -a( 1 ) .  Note that if the terms a and a+ b have the same 
sign, then Q does not change sign. 

The component of the azimuthal velocity w4 associated with the term a in (12)  
represents the flow due to a line vortex along the axis of symmetry of the system with 
circulation 2 n d .  The component of w4 associated with the constant b in (12)  
represents the flow induced by a vorticity source at the origin of strength b,  such that 
the vorticity flux out of the hemispherical surface So, 0 < 0 < in, is 2 n W .  (In the 
special case u x 1 (see (14) and (15) later) the vorticity source is isotropic, that is 
r . 6  = Inb/r.) Thus the total flux of the vorticity 6 out of So is 2n(a+ b )  r. If b < 0 and 
a + b = 0 the radial vorticity converges to the origin and is discharged in the form of 
a line vortex along the axis of the system. If the line vortex undergoes intensification 
then a > - b  and (see (12 ) )  Q(0) > 0. 

3. Boundary conditions 
Since g is proportional to u’/u (see (9)), without loss of generality, we can set 

u(0) = 1 .  The condition that the normal velocity is zero on the plane y = 0 yields 
g ( 0 )  = 0, that is u’(0) = 0. If u(y) = 0 at some y ,  g(p)  and g’(y) are infinite there and 
we have velocity breakdown. Thus ( 1  1) must be solved subject to u(0) = 1, u’(0) = 0, 
u ( p )  > 0. The constants a ,  b,  P, Q and S are specified by the boundary conditions 
concerning the behaviour of tr on the wall and the axis of the system. In general, 
not all conditions can be satisfied and a variety of conditions have been used by 
different authors. 

The special case SZ = 0 was investigated by Squire (1952) who imposed the 
condition of finite velocity on the axis y = 1. This condition requires (see ( 1 ) )  that 
g(1) = 0, g’(1) =$nite and implies G(1) = G ( 1 )  = 0, that is Q = -2P,  S = P .  The 
condition of zero radial velocity on the wall, that is g’(0) = 0, cannot be satisfied and 
was disregarded. For such a configuration there is an analytic one-cell solution (for 
details see Squire 1952) valid for k2P > - 3.84, except P = 0. The case P < 0 relates 
to inflow near the wall and up-draught in the axial region and the case P > 0 relates 
to the opposite picture. 

Yih et al. investigated the interaction of the Squire solution in the presence of a 
point source of vorticity such that a = 0, b = 1, that is Q(0) = 1, Q(1) = 0. The 
velocity fields associated with the solutions of Yih et al. are finite, except at the 
origin, but their azimuthal and (in general) radial components are not zero on the 
wall p = 0. 

If, again for the special case Q = 0, we set v = 0 on the wall and t,b = 0 on the 
symmetry axis then g ( 0 )  = 0, g’(0) = 0, g ( 1 )  = 0. These conditions require that 
G(0) = G(1)  = 0, and yield G = P(p2-p ) .  It can be shown computationally that for 

2 1 - 2  
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this form of G the solution of (1  1 )  yields a velocity field such that u > 0 in 0 < p < 1 
for k2P < 7.644 = A,. The poloidal flow is a one-cell regime, which for P > 0 relates to 
a central up-draught and for P < 0 relates to a central down-draught. The 
maximum value of k2P = A ,  is associated with the limiting case u(1) = 0 and was 
also obtained by Goldshtik & Shtern. The radial velocity is - vg'(p)/r and it can be 
shown that for the boundary conditions mentioned here g' has a logarithmic 
singularity at  p = 1. This singularity is the price, in comparison with the Squire 
solution, for satisfying the condition u = 0 on the wall p = 0. It was shown by Paul1 
& Pillow (1985a) and by Goldshtik & Shtern that the logarithmic singularity in g'(p) 
on the axis of the system is associated with a force along this axis with density 
inversely proportional to the distance from the origin. This configuration (with the 
logarithmic singularity) was studied by Serrin in the presence of a point sink of 
vorticity a t  the origin with the vorticity of the sink being discharged in the form of 
a line vortex along the symmetry axis such that a = 1, b = - 1 and so sZ(0) = 0, 
sZ( 1 )  = 1. The special case a = - b = P = 1 is that studied by Goldshtik and yields 
g'(1) =$mite and has no line force along the axis p = 1. 

The quantity D is given by (12) and if there is vorticity flux out of the surface 
6 < then Q(0) =I= 0. Here we assume that the non-azimuthal component of tr is 
zero on the wall p = 0 and finite on the axis p = 1. These conditions require that 
g(0) = 0 = g'(0) = g(l),g'(l) =$nite. Scrutiny of (7),  (8) and (12) shows that the 
conditions imposed on the g-function require that G(0) = G( 1 )  = G'( 1) = 0, that is 
P = - Q  = a2, S = 0. Hence 

Thus for specified a and b we must solve ( l l ) ,  (12) and (13) subject to u(0) = 1, 
u'(0) = 0 and u > 0. 

If b = 0, sZ = a (from (12)), and then G = 0, u = 1 and g = 0, that is the g-field is 
driven by the vorticity source. In effect the g-field is generated by the rotationality 
of the 5 x u term in the momentum equation (due to the radial vorticity and the 
associated azimuthal flow) that cannot be balanced by a pressure gradient. The same 
type of situation arises in a similar problem concerning the magnethydrodynamics 
of an electric current discharged from a point in a semi-infinite fluid (Lundquist 
1969; Sozou 1971 ; Sozou & English 1972). In  that case the electric current density 
corresponds to the radial vorticity. It induces the magnetic induction field which 
corresponds to the azimuthal velocity. The flow is poloidal and is generated by the 
rotationality of the Lorentz force due to the electric current density and the 
associated magnetic induction. Equations (4) and (1 1) correspond to equations (7) 
and ( 1  1) in the paper by Sozou & English. 

The boundary conditions employed here mean that the present solution, besides its 
main interpretation, represents also the joint action of the agents generating the 
solutions constructed by Goldshtik and by Yih et al. for the case (in their notation) 
T = O .  

4. The Stokes flow problem 
If a, b and k are such that the coefficient of u in (1 1) is small, then u x 1 and hence 

R x a+b(l-p) ,  (14) 

r = I"b/r. (15) 
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FIQURE 3. Schematic representation of meridian flow patterns for the Stokes flow regime. (a)  a = 0 
or 1, b > 0 or a = 1 ,  b < -4.86; ( b )  a = 1 ,  -4.86 < b < -2.70; (c) a = 1, -2.70 < b < 0. 

If we substitute (14) in (5 )  and, ignoring the nonlinear terms in g,  integrate the 
resulting expression four times and apply the boundary conditions g(0) = g’(0) = 
g(1) = 0 we obtain 

g = bk2[a((l+,u)21n(l+p)-(l-,u)21n(l-,u)) 

-4(a+ b )  (1 +p)  In (1 + p )  + (2a+4b) ((2 In 2 - 1)p2+p)]. (16) 

The derivation of (16) implies that, for this regime, the azimuthal flow and radial 
vorticity drive the poloidal flow and are not affected by it. When there is interaction 
between the poloidal and azimuthal flows the problem must be solved numerically. 
This is done in $5.  

Equation (16) consists of two parts; one with coefficient abk2 and one with 
coefficient b2k2. Both parts are negative if a and b have the same sign. Therefore for 
all a and b, g has at  most one zero. 

If a = 0, g(p) < 0 and (16) represents a one-cell solution with down-draught in the 
axial region and radial outflow near the wall. This is the configuration for R 4 1, 
T = 0 in the paper by Yih et al. Apart from a constant negative factor, the g-field is 
the same as that found by Lundquist for the corresponding MHD flow field mentioned 
before ; the proportionality constant is negative because here the ‘force ’ driving 
the flow is directed oppositely to the Lorentz force in the MHD problem. 

If we change the signs of a and b we change the sign of 51 but g remains unaltered, 
and we shall assume that a > 0. A numerical evaluation of (16) revealed the 
following. (i) F o r b  > 0, and also forb < -(2ln2- l)a/(3ln2-2) = -4.86a,g(,u) < 0 
and we have a one-cell flow configuration which has the same general direction as 
that associated with the case a = 0. (ii) For -4 .86~  < b < -2.70a,g(p) changes sign; 
it is negative near the wall p = 0 and positive near the axis ,u = 1. The solution has 
a two-cell structure with radial outflow near the wall and an up-draught in the 
central region. (iii) For 0 > b > (2 - ln4) a/ (4  In 2 - 3) = - 2.70a, g ( p )  > 0 and the 
flow field is a one-cell configuration representing an inflow near the wall and an up- 
draught in the central region. A schematic illustration of the flow pattern for the 
Stokes flow regime is shown in figure 3. 

The flow for the case b < 0, a + b > 0,  which relates to the configuration where the 
radial vorticity converges to the origin and is discharged in the axial direction and 
stretched, is similar to the one-cell flow pattern of figure 3(c). The stretching 
coefficient for this case may be defined by the positive quantity h = ( a + b ) / ( b ( .  It is 
evident from (14) that for a fixed b,  i2 is larger when a, that is the stretching, is larger. 
Also it follows from (16) that for given b < 0 and k ,  g is larger when a is larger. These 
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observations mean that for a vorticity sink in a given fluid, that is for specified r, v 
and b,  both the azimuthal and poloidal flows are more intense for the case of larger 
stretching which is manifested as larger A. 

5. The nonlinear configuration 
The basic parameters of the problem are ak and bk and we can fix one of the 

quantities a, b,  k and solve the problem in terms of the other two. We set a = 1 and 
solved the problem for b and k .  Since we are interested in the possible application of 
the solutions to atmospheric vortices, where the vorticity in the bulk of the Auid 
converges to the central region and is deflected in the axial direction where i t  
probably undergoes intensification, we restricted the investigation of the nonlinear 
problem to the data a = 1 ,  - 1 < b < 0 and we refer to cases associated only with 
these data. The problem was solved iteratively as follows. We specified SZ and 
constructed G(p) from (13) and then solved (11) by forward integration (Runge- 
Kutta methods) subject to u(0) = 1,  u’(0) = 0. The function u ( p )  was substituted 
in (12) for an improved approximation to SZ, which was used in (13) for a new G(p) 
which was then used for a new u(p)  and so on until convergence. We assumed that 
convergence was achieved when the values of u and 52 (at all points) obtained a t  two 
successive approximations were the same to the fourth decimal place. For prescribed 
b we started the process by selecting a relatively low value of k ,  say k, ,  and setting 
SZ = 1 + b - bp. When we constructed a solution we increased k from k,  to k ,  and used 
the a ( y )  associated with k ,  as a start-off approximation for k ,  and the same b.  This 
process was repeated for constructing a solution to a higher k ,  say k,, and so on. 
When k was close to a critical value the successive values of SZ and u obtained from 
successive iterations were oscillating. To overcome this difficulty we used under- 
relaxation for the SZ-values and eventually the relaxation parameter was set equal to 
zero. We used a step length of 0.0005. Some numerical experiments indicated that for 
the values of our parameters this step length yields reasonably accurate results. 

The same results were also obtained by a shooting method similar to that 
employed by Goldshtik & Shtern. Equation (6) was integrated to yield 

( 1 - ~ 2 ) G + 2 p G ’ - 2 G + 2 S Z 2  = 2, (17) 

since G(1) = G’(1) = 0 and SZ(1) = 1 .  For prescribed b and k we set SZ(0) = 1 + b ,  
g(0) = 0, G ( 0 )  = 0 and guessed SZ’(0) = b,, G(0) = c, and integrated (4), (17) and (7) 
from y = 0 to p = 1 using Runge-Kutta methods. The terms b, and c, were 
varied iteratively so as to satisfy the conditions G ( l )  = 0 = G’(1). The values of 
G( 1) and G’( 1)  were projected from those at  the previous four points by assuming 
that at x = 1 the fourth-order differences for G and G are zero. Near the critical stage 
(see later) the shooting method required a step length of 0.00005 to yield the same 
overall accuracy as the previous procedure. Figure 4 shows the flow fields for a = 1, 
b = -0.1 relating to k = 1 , 5  and 6.66. These flow fields are typical for configurations 
associated with a = 1, - 1 < b < 0. The case k = 1 in effect relates to the Stokes flow 
regime. This is readily seen from the shape-practically a straight line-of the 
corresponding SZ-curve shown in figure 4(d). As k increases so do the nonlinearities 
of the problem. The vorticity is convected towards the axis and the flow intensifies. 
The intensification of the flow is evident from figure 4(a-c) .  The convection of 
vorticity towards the axis is deduced from figure 4(d). The solid angle of a cone 
having as axis the line p = 1 and bounded by the generators p = yo is 2n(l -yo )  and 
the radial vorticity imput into the origin sink through the cone is 27r(SZ(1)-SZ(p0)). 
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FIGURE 4. Streamlines in a meridian plane and values of SZ for a = 1, b = -0.1 and various k: (a )  
k = 1, ( b )  k = 5, (c )  k = 6.66. In  (a-c) the numbers on the curves are values of lOo@/vL, where L 
is a characteristic length. In ( d ) ,  the corresponding Q-curves, the numbers on the curves are values 
of k. 

We find, for example, that the cone ,uo = 0.8 (whose solid angle is 20% of that of the 
hemisphere p = 0) for k = 5 and 6.66 contains 29 and 66 YO, respectively, of the radial 
vorticity of the system. (For b = -0.1 and 6.34 < k < 6.67 there is another set of 
solutions (described later) where the radial vorticity is convected towards the axis 
and the velocity intensifies as k decreases.) For k = 6.663 (and b = -0.1) we 
constructed a solution yielding u(1) = 0.146 but for k 2 6.67 neither the procedure 
involving (1 1)-( 13) nor the shooting method produced a convergent solution. Clearly 
there is a critical value for k close to 6.67. It actually turns out that there are two 
critical values of k associated with this problem. 

The functions G, u‘ and U” are negative and therefore as ,u increases, u and u‘ 
decrease. We assume that for a fixed b as we vary k at or beyond some critical value, 
u vanishes at p = 1 ; that configuration represents velocity breakdown at ,u = 1 .  It is 
easily seen from (12) that if u( 1) + 0, then !2 + 1 + b for ,u < 1. 

It is a straightforward matter to show from (1 1 )  and (13) that if !2 = 1 + b, then 

where A = - k 2 ( 2 b + b 2 ) .  The conditions for the solution of (18) are u(0) = 1, u’(0) = 

0,  u( 1) = 0 and u > 0 for p < 1. Equation (18) yields the limiting value A = A ,  = 

7.644 that was mentioned in $3, from which we derive the smaller critical value for 
k ,  say k,, given by 

Forb = -0.1, (19) yields k,, = 6.343. For b = -0.1 the other critical value of k ,  say 
kc2, is close to 6.67. 

k,, = 2.765/(-2b-b2)4. (19) 
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FIGURE 5. Streamlines in a meridian plane and values of f2 for type I1 solutions for a = 1, b = 
-0.1 ; (a )  k = 6.36, ( b )  k =6.66. In ( a ,  b )  the numbers of the curves are values of lO$/vL, where 
L is a characteristic length and in the 0-curves of (c) they are values of k. Note that the scaling of the 
streamlines in figures 4 and 5 differs by a factor of 10. 

For a given k in the range k,, < k < k,, there are two solutions to the problem. One 
of these represents the natural development of the solution as we gradually increase 
k through kcl.  We shall refer to this as a type I solution. The solution shown in figure 
4(c) is such a solution. The other solution emanates from the limiting configuration 
associated with 

p = 1 ,  S Z = l + b ,  k = k , , .  

Figure 5 shows two such solutions for b = - 0.1. We shall call these solutions type 11. 
When k is close to k,, the flow has a jet-like structure with all the radial vorticity 
concentrated in a thin cone about the axis of the system and the circulation about 
the axis is 2rcT(a+ b) ,  a constant. Such a configuration is shown in figure 5(a)  which 
relates to k = 6.36. As k increases, the intensity of the flow decreases and the radial 
vorticity of the type I1 solution spreads. This is evident by comparing the flow fields 
shown in figures 5 (a)  and 5 ( b )  and the SZ-curves of figure 5 ( c ) .  Our detailed data show 
that for k = 6.36 and 6.66 the cone bounded by the generators ,LA = 0.8 contains 99.5 
and 72% of the radial vorticity of the system. It is impossible to calculate k,, 
exactly, but our computations show that at k,, the types I and I1 solutions coalesce. 
A similar situation can arise in the problem considered by Serrin. According to 
Goldshtik & Shtern (1990, p. 4 9 4 ,  for a region of the parameter space used by Serrin 
there are two regular solutions which on a section of the boundary ‘merge and 
disappear ’. These authors suggest (private communication) that the same situation 
arises in the present problem, and for k > k,, the velocity develops a singularity 
along the axis of the system. Their reasons are given in the Appendix. 

Table 1 shows values of k,, and approximate values of k,, for some values of b. 
The approximate values of k,, shown in table 1 are slightly larger than those 

associated with coalescence and relate to velocity breakdown. For b = - 1, that is for 
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b k c ,  k c ,  
- 1  2.765 2.765 
-0.5 3.193 3.27 
-0.1 6.364 6.67 

TABLE 1. Values of k,, and approximate (which are slightly larger than) 
values of k,, for some values of b. 

-0.002 43.74 46.3 

the case investigated by Goldshtik, there are no type I1 solutions and when the value 
of k is close to (but less than) 2.765 the poloidal flow has a jet-like structure similar 
to that shown in figure 5 ( a ) .  Inspection of table 1 shows that as Ibl decreases, the gap 
between the two critical values of k increases slowly. 

The numerical programming, computations and the organization of the diagrams 
of this paper were carried out by Mark Ashton and Linda Wilkinson. 

Appendix. The solution for k > k,, 

By M .  A .  Goldshtik and V .  N .  Shtern 

Institute of Thermophysics, Novosibirsk 630090, Russia 
To investigate how the solution of the problem breaks down for k > k,, we consider 
the solution of (4), (6), and (7) in the region 0 < p < ,uo < 1, where po is close to 1 ,  
subject to the following boundary conditions : 

at p = O ,  g = g ’ = O ,  Q = l + b ;  (A 1) 

at ,u = po, g = G‘ = 0, 52 = 1. (A 2) 

We note, from differentiating (7) and using (A 2), that g”(po) = 0. For given b and k 
we set g(0) = g’(0) = G(0) = 0, Q(0) = 1 + b and prescribed U(0) = b,, G(0) = c1 and 
G ( 0 )  = c, and integrated (4), (6) and (7) from ,u = 0 to /I = po. The parameters b,, c1 
and c, were varied iteratively until the conditions (A 2) were satisfied. In  figure 6 
we plot the parameter b, for some values of k. The solid curve refers to the exact 
solution. The branches yielding solutions types I and I1 are labelled accordingly. The 
broken curve refers to the modified solution for the region 0 < ,u < po = 0.999 and 
has three branches. The first branch is close to branch I, the second branch is close 
to branch I1 and the third branch is almost parallel to the k-axis and stretches to 
k = CO. For given k, values of b,  associated with the first and second branches yield 
solutions similar to types I and 11, respectively. Values of b, associated with the third 
branch yield solutions that have a jet-like structure near po. As po + 1, the first and 
second branches of the broken curve tend to branches I and 11, respectively, of the 
solid curve. The third branch tends to the k-axis, and at  po the absolute value of g‘(po) 
associated with this branch increases very rapidly. Since for k > k,, only the third 
branch exists, it means that for k > k,, and po+ 1 the velocity field develops a 
singularity on the axis and breaks down there. Note that in that case the azimuthal 
friction Q’(0) = 6 ,  vanishes. 
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FIGURE 6. Values of b, = G’(0) in terms of the parameter k. The solid curve represents the exact 
solution. The numbers I and I1 show the 6, values that yield types I and I1 solutions. The broken 
curve relates to the modified solution for yo = 0.999. 
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